247 research outputs found

    Zoning strategies for managing outbreaks of alien plant pests in the European Union: a review

    Get PDF
    Managing outbreaks of alien plant pests is key to preserving biodiversity and safeguarding crop production. Zoning strategies are applied by plant health authorities to tailor measures to the risk of spread in relation to distance from the outbreak epicentre and the biology of the pest. Here we synthesize information on outbreak management to evaluate the diversity and consistency of such approaches. We collected information on the zoning strategies of 121 outbreaks of 25 plant pests in the European Union (EU). According to the organism’s presence and the measures applied, five zones were distinguished: an infested zone (83% of cases), a buffer zone (76%), a clear-cutting zone (28%), an eradication zone (1%) and a containment zone (1%). Infested zones and buffer zones were adjacent non-overlapping zones, while the clear-cutting zone, eradication zone or containment zone was within either the infested zone or buffer zone. A combination of infested and buffer zones was used in 51% of recorded cases. Measures differed within different zones. Destruction of infested plants in the infested zone was done in 78% of the cases, while surveillance was always applied in the buffer zone. Regulation of an organism at EU level led to a convergence of zoning strategies applied by different member states. Regulations often prescribed the greatest widths used before regulations were issued. Further analyses are needed to explore the efficacy of different strategies including the costs of each strategy. Such analyses should combine insight from practice with bio-economic modelling

    Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory

    Get PDF
    EFSA was asked to update the 2015 EFSA risk assessment on Xylella fastidiosa for the territory of the EU. In particular, EFSA was asked to focus on potential establishment, short‐ and long‐range spread, the length of the asymptomatic period, the impact of X. fastidiosa and an update on risk reduction options. EFSA was asked to take into account the different subspecies and Sequence Types of X. fastidiosa. This was attempted throughout the scientific opinion but several issues with data availability meant that this could only be partially achieved. Models for risk of establishment showed most of the EU territory may be potentially suitable for X. fastidiosa although southern EU is most at risk. Differences in estimated areas of potential establishment were evident among X. fastidiosa subspecies, particularly X. fastidiosa subsp. multiplex which demonstrated areas of potential establishment further north in the EU. The model of establishment could be used to develop targeted surveys by Member States. The asymptomatic period of X. fastidiosa varied significantly for different host and pathogen subspecies combinations, for example from a median of approximately 1 month in ornamental plants and up to 10 months in olive, for pauca. This variable and long asymptomatic period is a considerable limitation to successful detection and control, particularly where surveillance is based on visual inspection. Modelling suggested that local eradication (e.g. within orchards) is possible, providing sampling intensity is sufficient for early detection and effective control measures are implemented swiftly (e.g. within 30 days). Modelling of long‐range spread (e.g. regional scale) demonstrated the important role of long‐range dispersal and the need to better understand this. Reducing buffer zone width in both containment and eradication scenarios increased the area infected. Intensive surveillance for early detection, and consequent plant removal, of new outbreaks is crucial for both successful eradication and containment at the regional scale, in addition to effective vector control. The assessment of impacts indicated that almond and Citrus spp. were at lower impact on yield compared to olive. Although the lowest impact was estimated for grapevine, and the highest for olive, this was based on several assumptions including that the assessment considered only Philaenus spumarius as a vector. If other xylem‐feeding insects act as vectors the impact could be different. Since the Scientific Opinion published in 2015, there are still no risk reduction options that can remove the bacterium from the plant in open field conditions. Short‐ and long‐range spread modelling showed that an early detection and rapid application of phytosanitary measures, consisting among others of plant removal and vector control, are essential to prevent further spread of the pathogen to new areas. Further data collection will allow a reduction in uncertainty and facilitate more tailored and effective control given the intraspecific diversity of X. fastidiosa and wide host range.Additional co-authors: EFSA Panel on Plant Health (PLH), Wopke van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia ZappalĂ , Donato Boscia, Gianni Gilioli, Rodrigo Krugner, Alexander Mastin, Anna Simonetto, Joao Roberto Spotti Lopes, Steven White, JosĂ© Cortinas Abrahantes, Alice Delbianco, Andrea Maiorano, Olaf Mosbach‐Schulz, Giuseppe Stancanelli, Michela Guzzo, Stephen Parnel

    Pest categorisation of Unaspis citri

    Get PDF
    The Panel on Plant Health performed a pest categorisation of the citrus snow scale, Unaspis citri (Comstock) (Hemiptera: Diaspididae), for the European Union (EU). This is a well-de fi ned and distinguishable species, native to south-eastern Asia, which has spread to many tropical and subtropical regions. U. citri can be a pest of citrus and has been cited on over 28 different species in 16 plant families. In the EU, U. citri occurs in the Azores. There is uncertainty as to whether it occurs in continental Portugal. Reports of it occurring in Greece and Spain are likely to be invalid and based on interception records from these countries. An old Italian record is a misidenti fi cation. U. citri is listed in Annex IIAI of 2000/29/EC as a harmful organism. The international trade of hosts, as either plants for planting, fruit or cut fl owers, provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants for planting from third countries. U. citri is mostly con fi ned to coastal humid tropical areas and does not occur in semi-arid areas that are irrigated. Nevertheless, given that it occurs in the Azores and that there are regional climatic similarities between places where U. citri occurs and climates within the EU, and taking EU host distribution into account, U. citri has the potential to establish in the EU, especially in citrus-growing regions around the Mediterranean where losses in quality and yield of citrus could occur. Phytosanitary measures are available to inhibit the likelihood of introduction of U. citri . Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), or as a potential regulated non-quarantine pest (RNQP), U. citri meets the criteria assessed by EFSA for consideration as a potential Union QP

    Pest categorisation of Conotrachelus nenuphar

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), for the EU. C. nenuphar is a well-defined species, recognised as a serious pest of stone and pome fruit in the USA and Canada where it also feeds on a range of other hosts including soft fruit (e.g. Ribes, Fragaria) and wild plants (e.g. Crataegus). Adults, which are not good flyers, feed on tender twigs, flower buds and leaves. Females oviposit into host fruit; if oviposition occurs in young fruit, the fruit usually falls prematurely reducing yield; oviposition in older fruit causes surface blemishes and the fruit distorts as it develops reducing marketability. Larvae develop within host fruit but exit to pupate in soil. Adults overwinter in leaf litter. C. nenuphar is not known to occur in the EU and is listed in Annex IAI of Council Directive 2000/29/EC. Fruit infested shortly before harvest and soil with leaf litter accompanying plants for planting could potentially provide a pathway into the EU. Considering the climatic similarities between North America and Europe, and that hosts occur widely within the EU, C. nenuphar has potential to establish within the EU. There could be one or two generations per year, as in North America. Impacts could be expected, e.g. in Prunus spp. and apples. Phytosanitary measures are available to reduce the likelihood of introduction of C. nenuphar. All of the criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. C. nenuphar does not meet the criteria of occurring in the EU nor plants for planting being the principal means of spread. Hence it does not satisfy all of the criteria that are within the remit of EFSA to assess for it to be regarded as a Union regulated non-quarantine pest (RNQP)

    Pest categorisation of Sternochetus mangiferae

    Get PDF
    The European Commission requested EFSA to conduct a pest categorisation of Sternochetus mangiferae (Coleoptera: Curculionidae), a monophagous pest weevil whose larvae exclusively feed on mango seeds, whereas adults feed on mango foliage. S. mangiferae is a species with reliable methods available for identification. It is regulated in the EU by Council Directive 2000/29/EC where it is listed in Annex IIB as a harmful organism whose introduction into EU Protected Zones (PZ) (Alentejo, Algarve and Madeira in Portugal, and Granada and Malaga in Spain) is banned. S. mangiferae is native to South East Asia and has spread to other mango-growing areas in Africa, South America and Oceania, causing significant damage. Larvae of S. mangiferae have been detected several times in mango fruit imported into the EU. In 2013, an outbreak was declared in one PZ in Spain. Official measures taken achieved eradication, which was officially declared in January 2018. The EFSA Plant Health Panel concludes that S. mangiferae could establish again and spread in the mango-growing areas of southern EU. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), as a potential protected zone quarantine pest (PZQP) or as a potential regulated non-quarantine pest (RNQP), S. mangiferae meets with no uncertainties the criteria for consideration as a potential Union QP, as it is absent from the EU, potential pathways for entry exist, and its establishment would cause an economic impact. The criterion of the pest being present in the EU, which is a prerequisite for RNQP and PZ QP, is not met

    Pest categorisation of Toxoptera citricida

    Get PDF
    23The European Commission requested EFSA to conduct a pest categorisation of Toxoptera citricida (Hemiptera: Aphididae), an oligophagous aphid developing and reproducing parthenogenetically on tender leaf and flower flush of citrus (Rutaceae). T.citricida is a taxonomic entity with reliable methods available for detection and identification. It is regulated in the EU by Council Directive 2000/29/EC where it is listed in Annex IIAI as a harmful organism whose introduction and spread into the EU shall be banned. T.citricida is native to tropical regions of Southeast Asia and has spread to most citrus-growing areas worldwide, except California and the Mediterranean basin, causing significant damage to citrus as it is the most efficient vector of the Citrus tristeza virus (CTV). T.citricida occurs in Madeira and, with a restricted distribution, in the north-west of the Iberian Peninsula, mostly on backyard citrus trees. This may have hindered the effectiveness of the official control measures in these areas. There are further phytosanitary measures in place in the EU in order to limit entry via traded commodities. Citrus plants for planting are regulated and are a closed pathway. However, there is uncertainty regarding host status of some non-rutaceous plants on which this aphid has been recorded and so other plant genera may provide additional pathways. The EFSA Plant Health Panelconcludes that the establishment of T.citricida in the main EU citrus growing areas around the Mediterranean would have significant impacts because of its ability to vector CTV. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), as a potential protected zone quarantine pest (PZQP) or as a potential regulated non-quarantine pest (RNQP), T.citricida meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP.openopenJeger, Michael; Bragard, Claude; Caffier, David; Candresse, Thierry; Chatzivassiliou, Elisavet; Dehnen‐Schmutz, Katharina; Gilioli, Gianni; GrĂ©goire, Jean‐Claude; Jaques Miret, Josep Anton; Navarro, Maria Navajas; Niere, Björn; Parnell, Stephen; Potting, Roel; Rafoss, Trond; Rossi, Vittorio; Urek, Gregor; Van Bruggen, Ariena; Van der Werf, Wopke; West, Jonathan; Winter, Stephan; Gardi, Ciro; Bergeretti, Filippo; MacLeod, AlanJeger, Michael; Bragard, Claude; Caffier, David; Candresse, Thierry; Chatzivassiliou, Elisavet; Dehnen‐schmutz, Katharina; Gilioli, Gianni; GrĂ©goire, Jean‐claude; Jaques Miret, Josep Anton; Navarro, Maria Navajas; Niere, Björn; Parnell, Stephen; Potting, Roel; Rafoss, Trond; Rossi, Vittorio; Urek, Gregor; Van Bruggen, Ariena; Van der Werf, Wopke; West, Jonathan; Winter, Stephan; Gardi, Ciro; Bergeretti, Filippo; Macleod, Ala

    Pest categorisation of Ips sexdentatus

    Get PDF
    23The Panelon Plant Health performed a pest categorisation of the six-toothed bark beetle, Ips sexdentatus (Borner) (Coleoptera: Curculionidae, Scolytinae), for the EU. I.sexdentatus is a well-defined and distinguishable species, native to Eurasia and recognised mainly as a pest of pine (Pinus spp., in the pest's whole range) and spruce (mainly Picea orientalis in Turkey and Georgia). It also might occasionally attack Larix spp. and Abies spp. It is distributed throughout the EU (24 Member States). It is a protected zone quarantine pest in Ireland, Cyprus and the United Kingdom (Northern Ireland, Isle of Man), listed in Annex IIB of Council Directive 2000/29/EC. Wood, wood products, bark and wood packaging material are considered as pathways for this pest, which is also able to disperse by flight over tens of kilometres. The adults normally establish on fallen or weakened trees (e.g. after a fire or a drought) and can also mass-attack healthy trees. The males produce aggregation pheromones that attract conspecifics of both sexes. The insects also inoculate pathogenic fungi to their hosts. There are one to five generations per year. The wide current geographical range of I.sexdentatus suggests that it is able to establish anywhere in the EU where its hosts are present. Sanitary thinning or clear-felling are the major control methods. Pheromone mass-trapping is also locally implemented. Quarantine measures are implemented to prevent entry into the protected zones. All criteria for consideration as potential protected zone quarantine pest are met. The criteria for considering I.sexdentatus as a potential regulated non-quarantine pest are not met since plants for planting are not viewed as a pathway.openopenJeger, Michael; Bragard, Claude; Caffier, David; Candresse, Thierry; Chatzivassiliou, Elisavet; Dehnen‐Schmutz, Katharina; Gilioli, Gianni; Jaques Miret, Josep Anton; MacLeod, Alan; Navajas Navarro, Maria; Niere, Björn; Parnell, Stephen; Potting, Roel; Rafoss, Trond; Rossi, Vittorio; Urek, Gregor; Van Bruggen, Ariena; Van der Werf, Wopke; West, Jonathan; Winter, Stephan; KertĂ©sz, VirĂĄg; Aukhojee, Mitesha; GrĂ©goire, Jean‐ClaudeJeger, Michael; Bragard, Claude; Caffier, David; Candresse, Thierry; Chatzivassiliou, Elisavet; Dehnen‐schmutz, Katharina; Gilioli, Gianni; Jaques Miret, Josep Anton; Macleod, Alan; Navajas Navarro, Maria; Niere, Björn; Parnell, Stephen; Potting, Roel; Rafoss, Trond; Rossi, Vittorio; Urek, Gregor; Van Bruggen, Ariena; Van der Werf, Wopke; West, Jonathan; Winter, Stephan; KertĂ©sz, VirĂĄg; Aukhojee, Mitesha; GrĂ©goire, Jean‐claud

    Pest categorisation of Scirtothrips citri

    Get PDF
    The Panel on Plant Health performed a pest categorisation of the citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), for the European Union (EU). This is a well-de fi ned and distinguishable species, occurring in North America and Asia. Its precise distribution in Asia is uncertain. S. citri is a pest of citrus and blueberries and has been cited on over 50 different host species in 33 plant families. Whether all plants reported as hosts are true hosts, allowing population development of S. citri , is uncertain. S. citri feeds exclusively on young actively growing foliage and fruit. It is not known to occur in the EU and is listed in Annex IIAI of 2000/29/EC as a harmful organism. The international trade of hosts, as either plants for planting or cut fl owers, provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants for planting. Furthermore, measures aimed at the import of plants for planting in a dormant stage (no young foliage or fruits present) with no soil/growing medium attached, decreases the likelihood of the pest ’ s entry via other hosts. Considering that there are regional climatic similarities where S. citri occurs in the USA with climates in the EU, and taking EU host distribution into account, S. citri has the potential to establish in the EU, especially in citrus and blueberry growing regions around the Mediterranean where quality losses in citrus and yield losses in blueberry could occur. Phytosanitary measures are available to inhibit the likelihood of introduction of S. citri from infested countries. Considering the criteria within the remit of EFSA to assess its status as a potential Union quarantine pest (QP) or as a potential regulated non-quarantine pest (RNQP), S. citri meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP

    Pest categorisation of Longidorus diadecturus

    Get PDF
    The Panel on Plant Health performed a pest categorisation of Longidorus diadecturus (Nematoda: Longidoridae) for the EU. The nematode is a well-defined taxon and was described from Ontario, Canada and later reported from some states in the USA. The nematode is not present in the EU. It is regulated by Council Directive 2000/29/EC, listed in Annex I A I as L. diadecturus Eveleigh and Allen. It is a migratory ectoparasitic nematode species puncturing cells of plant roots thereby able to transmit the nepovirus Peach rosette mosaic virus (PRMV). The pest is found in soil associated with plant species belonging to different families. L. diadecturus is able to cause direct damage to plants, but its main damage is caused by vectoring PRMV. Soil is a potential pathway for this nematode for entry into the EU. The nematode is able to survive adverse conditions, but the virus may not persist inside the nematode for extended periods. Climatic conditions in the EU are similar to those found in the countries where the pest is currently present. Hosts of the nematode (and the associated virus) are, e.g. peaches and grapes; those crops are also widely cultivated in the EU. The nematode only moves short distances (around 1 m) but may be spread with soil moving activities. Measures are available to inhibit entry via soil as such. Entry of the nematode with soil attached to plants for planting that are not regulated is possible. L. diadecturus does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a potential Union quarantine pest

    Pest categorisation of Aleurocanthus spp

    Get PDF
    The Panel on Plant Health performed a pest categorisation of Aleurocanthus spp., a well-de fi ned insect genus of the white fl y family Aleyrodidae (Arthropoda: Hemiptera). Dif fi culties within the taxonomy of the genus give doubt about the ability to accurately identify some members to species level. Nevertheless, the genus is thought to currently include about ninety species mainly reported from tropical and subtropical areas. The genus is listed in Council Directive 2000/29/EC and is regulated on Citrus, Fortunella and Poncirus . Several Aleurocanthu s species are highly polyphagous; Aleurocanthu s spiniferus has hosts in 38 plant families; Aleurocanthu s woglumi has more than 300 hosts including Pyrus , Rosa and Vitis vinifera as well as Citrus . A. spiniferus is present in the EU in restricted areas of Italy and Greece, where it is under of fi cial control. No other Aleurocanthus spp. are known to occur in the EU. Host plants for planting, excluding seeds, and cut fl owers or branches are the main pathways for entry. Outside of the EU, the genus can be found in regions that have climate types which also occur within the EU, suggesting establishment is possible. Aleurocanthus spp. can be signi fi cant pests of crops that are also grown in the EU. Phytosanitary measures are available to reduce the likelihood of entry into the EU, e.g. sourcing host plants for planting from pest free areas. As a genus Aleurocanthus does satisfy all the criteria that are within the remit of EFSA to assess and required by risk managers to give it consideration as a Union quarantine pest. Aleurocanthus does not meet all of the criteria to allow it consideration by risk managers as a Union regulated non-quarantine pest (RNQP). Speci fi cally, Aleurocanthus is not widespread in the EU
    • 

    corecore